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Many cellular processes require a polarization axis which generally initially emerges as an inhomogeneous
distribution of molecular markers in the cell. We present a simple analytical model of a general mechanism of
cell polarization taking into account the positive feedback due to the coupled dynamics of molecular markers
and cytoskeleton filaments. We find that the geometry of the organization of cytoskeleton filaments, nucleated
on the membrane �e.g., cortical actin� or from a center in the cytoplasm �e.g., microtubule asters�, dictates
whether the system is capable of spontaneous polarization or polarizes only in response to external asymmetric
signals. Our model also captures the main features of recent experiments of cell polarization in two consider-
ably different biological systems, namely, mating budding yeast and neuron growth cones.
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Cell polarization is an essential step for many biological
processes such as cell migration, division, development, and
morphogenesis in widely varying cell types. Polarization is
characterized in its early stages by an inhomogeneous distri-
bution of specific molecular markers. Often cell polarization
is driven by an external asymmetric signal as in the well-
known example of cells migrating along a chemical gradient
performing chemotaxis �1�. In mating yeast the external sig-
nal is a pheromone gradient, which causes the cell to grow
an elongation known as a shmoo in the direction of the
pheromone source �1�. In the case of nerve cells, external
gradients direct the growth of the growth cone �2�. However,
observations show that some systems can also polarize spon-
taneously in the absence of any external gradient, e.g., as
reported in neutrophil cell migration, algae cell division, or
mating yeast �3–6�. These two distinct polarization pro-
cesses, driven or spontaneous, are necessary for cells to ful-
fill different biological functions, but what determines
whether a cell can polarize spontaneously or only in response
to an external signal is still not well understood. In this
Rapid Communication we propose a general physical mecha-
nism to address this fundamental biological question, briefly
discussing budding mating yeast and neuron growth cones as
specific examples.

The molecular basis of spontaneous and driven cell polar-
ization has been much debated over the past decade and is
likely to involve several pathways including historical marks
�such as that left by the previous budding event in yeast �1��.
However, it is widely recognized that the cytoskeleton plays
a crucial role in cell polarization. The efficiency of formation
of polar caps in yeast is reduced when actin transport is
disrupted and the polar caps formed are unstable �6–8�. In
the case of neurons, it has been shown that the polarization
of the growth cone is suppressed when microtubules are de-
polymerized �2�. To account for these observations, it is gen-
erally argued that the cytoskeleton filaments mediate an ef-
fective positive feedback in the dynamics of polarization
markers �5,6,9�. This arises from the molecular markers not
only diffusing in the cell cytoplasm, but also being actively
transported by molecular motors along cytoskeleton fila-
ments, the dynamic organization of which is regulated by the
markers themselves �see �10� for another example�.

A number of recent studies have embarked upon modeling
aspects of polarization. Many are reaction-diffusion systems
in which polarization emerges as a type of Turing instability
�11–16� or due to stochastic fluctuations �4� and some
�5,6,16� include cytoskeleton proteins as a regulatory factor.
In particular �6� consider a one-dimensional �1D� model
which shows that a positive feedback favors the emergence
of polarized states; however, as in other existing models, the
dynamics of markers in the cytoplasm and the geometry of
the filaments are not considered. Here, we propose an ana-
lytical model which explicitly addresses the geometry of the
cytoskeleton and its dynamical coupling to the transport of
markers while remaining general enough to be applicable to
a wide range of cell systems. Our model provides a minimal
mechanism of cell polarization induced by active transport
and shows that the dynamical organization of cytoskeletal
filaments actually plays a crucial role, since it dictates the
polarization ability of cells—spontaneous or driven. Specifi-
cally, our analysis suggests that, in general, the case of mi-
crotubule mediated transport does not lead to spontaneous
polarization, but the response to external signals can be ac-
curate, while the case of cortical actin mediated transport
leads to spontaneous polarization but a less robust response
to gradients.

We model polarization markers as particles which can be
either on the membrane or in the cytoplasm of the cell. For
simplicity we assume that the cell is essentially bidimen-
sional and we neglect curvature effects. The membrane
boundary is then taken as a 1D line along the x axis and the
cytoplasm is parametrized by �x ,z�. This geometry is
sketched in Fig. 1. The dynamical equations for the concen-
tration of markers on the membrane, ��x , t�, and in the cy-
toplasm, c�x ,z , t�, are given by

�t��x,t� = Dm�x
2��x,t� + jm, �1�

�tc�x,z,t� = − � · jb, �2�

where jm,b are the flux of molecules arriving at the membrane
and the flux in the bulk, respectively,

jm = konc�x,0,t� − koff��x,t� , �3�
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jb = − Db � c�x,z,t� + vc�x,z,t� , �4�

Dm,b are the diffusion constants in the membrane and the
bulk of the cell, respectively, and kon,off are the rates of at-
tachment and detachment to the membrane. In the bulk we
assume that the rate of molecules switching between filament
bound and free is high such that the flux of particles in the
cell bulk, jb, is effectively directed diffusion where v is the
velocity of directed transport of markers along cytoskeleton
filaments �17,18�.

The directed transport v, which drives the system out of
equilibrium, depends on the geometry of filaments, which we
assume to be determined by the concentration of markers on
the membrane ��x , t�. This makes the term involving v in
Eq. �2� a nonlinear coupling term. We consider two types of
idealized geometries for active transport motivated by the
two general biological classes of �a� microtubule cytoskel-
eton and �b� cortical actin systems.

�a� Filaments that grow from a nucleating center in the
cytoplasm toward the membrane can be taken in a first ap-
proximation to be perpendicular to the membrane as
sketched in Fig. 1�a�. Assuming a “search and capture
model” �19�, their orientation is regulated by the polarity
markers due to preferential stabilization and growth in re-
gions of high marker concentration. With this geometry, in
our model, the velocity of directed transport can be written
simply as v=−���x , t�uz, where � is a parameter for the
strength of coupling. In general microtubules are found with
such geometry, e.g., in neuron growth cones, for which ob-
servations suggest that the polarity markers, gamma-
aminobutyric acid �GABA� receptors, are associated with
and regulate the growing microtubule ends �2,20�.

�b� Filaments that are polymerized from nucleators local-
ized at the membrane can be approximated by a superposi-
tion of asters centered on the membrane as sketched in Fig.
1�b�. We model this as a field at position r= �x ,z� propor-
tional to the filament concentration, which decreases with
distance from the nucleation point r�= �x� ,z�� on the mem-
brane such that

v = − ��
−L/2

L/2 r − r�

�r − r��2
��x�,t�dx�, �5�

where � is the coupling parameter and L is the cell perimeter.
Note that we expect that other decaying functions of �r−r��

would not qualitatively change the results. This geometry
mimics the organization of cortical actin �see also �21��, for
instance, in budding yeast �6,22� in which molecular markers
�e.g., Cdc42, Spa2, and septins� are transported along the
filaments toward the membrane by myosin V molecular mo-
tors. When active, these molecules in turn induce actin
nucleation at the membrane thereby creating a positive feed-
back.

Finally, the above equations are completed by the condi-
tion for the conservation of total number of polarity markers:
M =�−L/2

L/2 dx ��x , t�+�−L/2
L/2 dx�0

�dz c�x ,z , t�. Note that we can
assume that the system is not bounded in the z direction since
we will only consider concentration profiles exponentially
decaying with z.

(a) Spontaneous polarization. To determine whether spon-
taneous polarization occurs in such systems we perform a
linear stability analysis of Eqs. �1� and �2� around the homo-
geneous out of equilibrium steady-state solution which reads
�0= �kon /koff�c0�0�, c0�z�=c0�0�e−�z. Here, �=��0 /Db for
case �a� and �=��0� /Db for case �b�. The conservation of
markers fixes the value of c0�0� in terms of M. We perturb
the system in the infinite size L limit about the homogeneous
steady state such that ��x , t�=�0+�ke

ikx+st, c�x ,z , t�=c0�z�
+ck�z�eikx+st, and obtain to linear order from Eq. �1�,

�k =
konck�0�

s + Dmk2 + koff . �6�

In case �a� of a schematic microtubule system where v
=−���x , t�uz, Eq. �2� is solved by ck�z�=Ae−�z+ �ck�0�
−A�e−�z with �= �

2 �
1
2 ��2+4k2+4s /Db�1/2 and where A is

determined by the conservation of flux at the membrane
�jm+ jb ·uz� �z=0=0. Substituting this into Eq. �2� leads to the
dispersion relation for s�k�,

�s + Dbk2��koff�2� − �� + �s + Dmk2�	� − � −
kon

Db

�

+ �2Dbkoff�� − �� = 0. �7�

In the limits of both small and large k this gives the same
solution s=−Dk2, where D=min�Db ,Dm�. These limiting
negative solutions suggest that the real part of s�k� is always
negative, which can indeed be checked by a numerical search
of the parameter space. This shows that the homogeneous
state is linearly stable and there is no spontaneous polariza-
tion. This actually compares well to experiments in neuron
growth cones �2�. When the gradient was removed, the dis-
tribution of receptors returned to a symmetric distribution
indicating the stability of the homogeneous state and the lack
of spontaneous polarization, as expected from our results.

We now consider case �b� of a schematic cortical actin
system modeled by Eq. �5�. In this case Eq. �2� is solved by
ck�z�=Be−��+k�z+ �ck�0�−B�e−�z, where B is determined by
the conservation of flux at the membrane and the dispersion
relation finally reads

�s − �Dbk��koff�2� − �� + �s + Dmk2�	� − � −
kon

Db

�

+ �2Dbkoff�� + k − �� = 0. �8�
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FIG. 1. �Color online� Model geometry. Filaments nucleated at
the �a� cell center and �b� membrane. Arrows indicate the velocity
of directed transport. Concentration of molecular markers � on the
membrane and c in the bulk.

HAWKINS et al. PHYSICAL REVIEW E 80, 040903�R� �2009�

RAPID COMMUNICATIONS

040903-2



When the coupling to the cytoskeleton is switched on ��
	0�, we find that to linear order in k, Eq. �8� gives the
positive solution s= �Dbkoff /kon��k�, which indicates that the
homogeneous solution is unstable and spontaneous polariza-
tion occurs. The full solution s�k� is plotted in Fig. 2, reveal-
ing a maximum at finite k=kmax which corresponds to an
instability of finite characteristic length 2� /kmax. Figure 3�a�
shows that the most unstable mode kmax increases with �, and
therefore with the strength of the coupling � and the number
of markers M. In the case of a cell of perimeter L, we con-
clude that for a weak coupling 2� /kmax	L and no patches
will be seen. Increasing the coupling � �or M�, � reaches a
series of thresholds defined by 2� /kmax=L /np and above
which np patches on the cell will grow. This generic behavior
predicted in the case of cortical actin mediated transport
agrees qualitatively with available experimental observations
of spontaneous polarization in yeast. Indeed, it is found in
�9� that spontaneous polarization occurs only above a thresh-
old value of uniform concentration of pheromone �1 nM �
factor, which is assumed to drive the coupling � of our
model�, while it is shown in �6� that the number of patches
indeed grows with the quantity of markers �Cdc42�. Note
that our model also predicts that increasing the size of the
cell would increase the number of patches, which could be
tested experimentally. Finally, the variation in the time scale
for the polarization of a cell, 
=1 /s, with the parameter � is
shown in Fig. 3�b� and corresponds qualitatively well to the
data from �9� showing decreasing time for spontaneous yeast
polarization with increasing concentrations of pheromone.

(b) Driven polarization. We now show that our model also
accounts quantitatively for driven polarization, for instance,
in the presence of an activator gradient. We assume that such
a gradient results in an asymmetric activation of the markers
on the membrane and therefore in a spatial inhomogeneity in
the coupling parameter �. We consider a perturbation �
=�0+�ke

ikx �where k=2� /L mimics a cell in a constant gra-
dient� and therefore look for solutions at linear order ��x�
=�0+�ke

ikx, c�x ,z�=c0�z�+ck�z�eikx.
In case �a� of a microtubule system, Eq. �2� with this

perturbation is solved by ck�z�=Ade−�dz+ �ck�0�−Ad�e−�dz

with �d= ��d /2�+1 /2��d
2+4k2�1/2, where �d=�0�0 /Db and

Ad is fixed by conservation of flux at the membrane. This
solution gives the polarized out of equilibrium steady state of

the cell in response to an external gradient �see Fig. 4� and
qualitatively reproduces experiments on neuron growth
cones �2�. Note that such a response is linear in the pertur-
bation: it therefore occurs for arbitrary small activator gradi-
ents and no threshold is involved. Furthermore, the response
is linearly stable, which implies that fluctuations in the ex-
ternal activator concentration will be damped out in the re-
sponse, and the cell will polarize on average only along the
activator gradient.

With the same method we can find the stationary state
also in case �b� of a cortical actin system. This analysis how-
ever only applies in the regime of small coupling �0 were the
steady-state solution is stable as discussed earlier. In the un-
stable regime in an activator gradient the cell is likely to
polarize spontaneously in the “wrong” direction due to con-
centration fluctuations, with a probability that increases for a
short polarization time 
 �see Fig. 3�. There is therefore a
trade-off for the biological system between the abilities to
polarize fast and to robustly polarize in the direction of a
weak gradient. Sensitivity is compromised in cases such as
mating yeast where it is important to polarize fast to gain a
mating partner. We expect this to be the case for many short-
range cell-cell interactions where local gradients are strong,
masking the effects of fluctuations thereby decreasing the
chance of spontaneous polarization in the wrong direction.
On the other hand in cases such as neuron growth cones, the
speed of polarization is sacrificed in favor of an accurate
response to weak gradients.
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FIG. 3. �Color online� �a� The most unstable mode kmax as a
function of �=��0� /Db �both normalized by R−1 as in Fig. 2�.
Cartoons of the distribution of markers are shown above the curve.
�b� 
=1 /s�kmax� as a function �. The calculated solid line is com-
pared to data �points� from �9� for the measured polarization time t
against pheromone concentration cph. We used a scaling of �
=2cph and 
=0.14t to obtain the observed fit. Other parameter val-
ues used are as in Fig. 2.
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FIG. 2. �Color online� Solution s�k� of Eq. �8�. k and � are
plotted in dimensionless units normalized by the inverse of the cell
radius, R−1=2� /L. Parameter values used are kon=1 �m s−1, koff

=0.1 s−1, Db=0.1 �m2 s−1, Dm=0.01 �m2 s−1, and R=10 �m.
The dotted line shows the small k asymptote s= �Dbkoff /kon�k.
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To conclude, we have shown that the positive feedback
triggered by the coupled dynamics of molecular polarity
markers and the cytoskeleton is not sufficient to produce
spontaneous polarization. We find that whether the system
can polarize spontaneously or not actually depends crucially
on the geometry of cytoskeletal filaments. Active transport of
markers along filaments oriented in a centered aster—such as
microtubules—leads to a stable homogeneous state, and po-
larized states occur only in response to a spatial gradient of
activator concentration. This result is compatible with �4�,
where it was argued on the basis of a generic one-
dimensional model with local positive feedback only that

homogeneous states are indeed stable, and that polarized
states occur only transiently due to stochastic fluctuations.
On the contrary, in the case of filament asters centered on the
membrane—such as cortical actin—we find that active trans-
port induces a nonlocal coupling which destabilizes the ho-
mogeneous states and therefore leads to spontaneous polar-
ization above a threshold uniform concentration of activator.
Since the robustness of polarization along a weak gradient is
compromised if the cell is able to polarize spontaneously,
this is of great importance in biological situations in which
either robust response to a gradient or fast spontaneous po-
larization is �dis�advantageous.

�1� B. Alberts, Molecular Biology of the Cell, 4th ed. �Garland
Science, New York, 2002�.

�2� C. Bouzigues, M. Morel, A. Triller, and M. Dahan, Proc. Natl.
Acad. Sci. U.S.A. 104, 11251 �2007�.

�3� R. Wedlich-Soldner and R. Li, Nat. Cell Biol. 5, 267 �2003�.
�4� S. J. Altschuler, S. B. Angenent, Y. Wang, and L. F. Wu, Na-

ture �London� 454, 886 �2008�.
�5� E. Marco et al., Cell 129, 411 �2007�.
�6� R. Wedlich-Soldner, S. Altschuler, L. Wu, and R. Li, Science

299, 1231 �2003�.
�7� R. Wedlich-Soldner, S. C. Wai, T. Schmidt, and R. Li, J. Cell

Biol. 166, 889 �2004�.
�8� J. E. Irazoqui, A. S. Howell, C. L. Theesfeld, and D. J. Lew,

Mol. Biol. Cell 16, 1296 �2005�.
�9� M. Piel et al. �unpublished�.

�10� K. Doubrovinski and K. Kruse, Phys. Rev. Lett. 99, 228104
�2007�.

�11� P. A. Iglesias and P. N. Devreotes, Curr. Opin. Cell Biol. 20,
35 �2008�.

�12� L. Ma et al., Biophys. J. 87, 3764 �2004�.
�13� H. Levine, D. A. Kessler, and W.-J. Rappel, Proc. Natl. Acad.

Sci. U.S.A. 103, 9761 �2006�.
�14� J. Xu et al., Cell 114, 201 �2003�.
�15� A. Narang, J. Theor. Biol. 240, 538 �2006�.
�16� M. Onsum and C. V. Rao, PLOS Comput. Biol. 3, e36 �2007�.
�17� F. Nédélec, T. Surrey, and A. C. Maggs, Phys. Rev. Lett. 86,

3192 �2001�.
�18� C. Loverdo, O. Bénichou, M. Moreau, and R. Voituriez, Nat.

Phys. 4, 134 �2008�.
�19� Y. Mimori-Kiyosue and S. Tsukita, J. Biochem. �Tokyo� 134,

321 �2003�.
�20� E. W. Dent, F. Tang, and K. Kalil, Neuroscientist 9, 343

�2003�.
�21� G. Salbreux, J. F. Joanny, J. Prost, and P. Pullarkat, Phys. Biol.

4, 268 �2007�.
�22� T. S. Karpova, J. G. McNally, S. L. Moltz, and J. A. Cooper, J.

Cell Biol. 142, 1501 �1998�.

-0.4 -0.2 0.0 0.2 0.4

0.2

0.4

0.6

0.8

1.0 x/L

z/R

x/L

a) b)
αVα/α

1.2

0.8
1.0
0

FIG. 4. �Color online� Density of polarity markers c�x ,z� for driven polarization with ��x� �a� plotted in the �x ,z model plane with
parameters as in Fig. 2 and �=6, k=1, M =1000, �k /�0=0.2 and �b� mapped onto a cartoon circular cell. Darker shading represents higher
density.
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